

Function Points or Lines of Code? – An Insight

Author:
Kurmanadham V.V.G.B. Gollapudi
Global Microsoft Business Unit
Wipro Technologies

Table of Contents

1. Objective ... 3
2. Scope ... 3
3. Introduction .. 3
4. Function Points .. 3

4.1 External Input (EI) .. 4
4.2 External Output (EO) ... 4
4.3 External Inquiry (EQ) ... 4
4.4 Internal Logical File (ILF) .. 4
4.5 External Interface File (EIF) .. 5
4.6 Rating the Transactional and Data Function Types ... 5
4.7 General System Characteristics (GSCs) ... 5
4.8 Final FP Count ... 6

5. Lines of Code .. 6
6. Function Points – Advantages & Disadvantages ... 7

6.1 Advantages .. 7
6.2 Disadvantages ... 8

7. Lines of Code – Advantages & Disadvantages ... 9
7.1 Advantages .. 9
7.2 Disadvantages ... 9

8. Recommendations ... 11
9. Conclusion .. 11

1. Objective
The objective of this article is to bring out the differences between the two most common sizing

metrics: Function Points and Lines of Code. This also offers insight into the advantages of

using Function Points for measuring the size of software.

2. Scope
The scope of the article is limited to highlighting the differences between Function Point

Analysis (FPA) and Lines of Code, giving a brief introduction of both. This does not include any

guidelines on Function Point Analysis itself. For details on FPA, readers are encouraged to

refer the International Function Point Users Group (IFPUG) website.

3. Introduction
One of the most important activities in the early stages of software development is estimation.

Size of the software, be it Function Points or Lines of Code, plays a pivotal role in this process,

and forms the base for deriving number of metrics to measure various aspects of the software,

throughout the development cycle. Hence measuring the size of software becomes critical.

Though many other sizing measure are in practice such as, objects, classes, modules, screens,

programs and so on, Lines of Code and Function Points are most widely used. Following

sections explain these two measures in brief.

4. Function Points
Function Point Analysis is an objective and structured technique to measure software size by

quantifying its functionality provided to the user, based on the requirements and logical design.

This technique breaks the system into smaller components so they can be better understood

and analyzed. Function Point count can be applied to Development projects, Enhancement

projects, and existing applications as well. There are 5 major components of Function Point

Analysis which capture the functionality of the application. These are: External Inputs (EIs),

External Outputs (EOs), External Inquiries (EQs), Internal Logical Files (ILFs) and External

Interface Files (EIFs). First three are treated as Transactional Function Types and last two are

called Data Function Types. Function Point Analysis consists of performing the following steps:

• Determine the type of Function Point count

• Determine the application boundary

• Identify and rate transactional function types to calculate their contribution to the

Unadjusted Function Point count (UFP)

• Identify and rate the data function types to calculate their contribution to the UFP

• Determine the Value Adjustment Factor (VAF) by using General System

Characteristics (GSCs)

• Finally, calculate the adjusted Function Point count

Each of the components of Function Point Analysis is explained in brief in the following sub-

sections.

4.1 External Input (EI)
External Input is an elementary process in which data crosses the boundary from outside to

inside. This data may come from a data input screen or another application. The data may be

used to maintain one or more internal logical files. The data can be either control information or

business information.

4.2 External Output (EO)
External Output is an elementary process in which derived data passes across the boundary

from inside to outside. Additionally, an EO may update an internal logical file. The data creates

reports or output files sent to other applications. These reports and files are created from

information contained in one or more internal logical files and external interface files. Derived

Data is data that is processed beyond direct retrieval and editing of information from internal

logical files or external interface files.

4.3 External Inquiry (EQ)
External Inquiry is an elementary process with both input and output components that results in

data retrieval from one or more internal logical files and external interface files. The input

process does not update or maintain any FTRs (Internal Logical Files or External Interface

Files) and the output side does not contain derived data.

4.4 Internal Logical File (ILF)
Internal Logical File is a user identifiable group of logically related data that resides entirely

within the application boundary and is maintained through External Inputs. Even though it is not

a rule, at least one external output and/or external inquiry should include the ILF as an FTR.

4.5 External Interface File (EIF)
External Interface File is a user identifiable group of logically related data that is used for

reference purposes only. The data resides entirely outside the application boundary and is

maintained by external inputs of another application. That is, the external interface file is an

internal logical file for another application. At least one transaction, external input, external

output or external inquiry should include the EIF as a File Type Referenced.

4.6 Rating the Transactional and Data Function Types
Each of the identified components is assigned a rating (as Low, Average, and High).

Transactional Function Types are given the rating depending upon the number of Data Element

Types (DET), File Types Referenced (FTR) associated with them. Data Function Types are

assigned ratings based on the number of Data Element Types (DET), and Record Element

Types (RET) associated. A DET is a unique user recognizable, non-recursive (non-repetitive)

field. A DET is information that is dynamic and not static. A dynamic field is read from a file or

created from DETs contained in an FTR. A RET is user recognizable sub group of data

elements within an ILF or an EIF. An FTR is a file type referenced by a transaction. An FTR

must also be an internal logical file or external interface file.

The total number of EIs, EOs, EQs, ILFs, and EIFs, after applying the weights corresponding to

the ratings (Low, Average, and High) will give the Unadjusted Function Point count (UFP).

4.7 General System Characteristics (GSCs)
The value adjustment factor (VAF) is calculated based on 14 General System Characteristics

that rate the general functionality of the application being counted. The GSCs are: Data

communications, Distributed data processing, Performance, Heavily used configuration,

Transaction rate, On-line data entry, End-user efficiency, On-line update, Complex processing,

Reusability, Installation ease, Operational ease, Multiple sites, and Facilitate change. The

degree of influence of each characteristic has to be determined as a rating on a scale of 0 to 5

as defined below.

• 0: Not present, or no influence

• 1: Incidental influence

• 2: Moderate influence

• 3: Average influence

• 4: Significant influence

• 5: Strong influence throughout

Once all the GSCs have been rated, Total Degrees of Influence (TDI) is obtained by summing

up all the ratings. Now, Value Adjustment Factor is calculated using the formula:

VAF = 0.65 + TDI/100

4.8 Final FP Count
After determining the Unadjusted Function Point count (UFP) out of transactional and data

function types, and calculating the Value Adjustment Factor (VAF) by rating the general system

characteristics, the final Function Point count can be calculated using the formula:

FP = Unadjusted Function Point count (UFP) * Value Adjustment Factor (VAF)

5. Lines of Code
Lines of code (often referred to as Source Lines of Code, SLOC or LOC) is a software metric

used to measure the amount of code in a software program. LOC is typically used to estimate

the amount of effort that will be required to develop a program, as well as to estimate

productivity once the software is produced. Measuring software size by the number of lines of

code has been in practice since the inception of software.

There are two major types of LOC measures: physical LOC and logical LOC. The most

common definition of physical LOC is a count of "non-blank, non-comment lines" in the text of

the program's source code. Logical LOC measures attempt to measure the number of

"statements", but their specific definitions are tied to specific computer languages (one simple

logical LOC measure for C-like languages is the number of statement-terminating semicolons).

It is much easier to create tools that measure physical LOC, and physical LOC definitions are

easier to explain. However, physical LOC measures are sensitive to logically irrelevant

formatting and style conventions, while logical LOC is less sensitive to formatting and style

conventions. Unfortunately, LOC measures are often stated without giving their definition, and

logical LOC can often be significantly different from physical LOC.

There are several cost, schedule, and effort estimation models which use LOC as an input

parameter, including the widely-used Constructive Cost Model (COCOMO) series of models

invented by Dr. Barry Boehm. While these models have shown good predictive power, they are

only as good as the estimates (particularly the LOC estimates) fed to them.

6. Function Points – Advantages & Disadvantages
6.1 Advantages
Function Point Analysis provides the best objective method for sizing software projects, and for

managing the size during development. Following are some of the many advantages that FPA

offers.

(a) Helps Comparison: Since Function Points measures systems from a functional perspective

they are independent of technology. Regardless of language, development method, or

hardware/platform used, the number of FP for a system will remain constant. The only variable

is the amount of effort needed to deliver a given set of FP; therefore, Function Point Analysis

can be used to determine whether a tool, an environment, a language is more productive

compared with others within an organization or among organizations. This is a critical point and

one of the greatest values of Function Point Analysis.

(b) Helps Monitor Scope Creep: Function Point Analysis can provide a mechanism to track

and monitor scope creep. FP counts at the end of requirements, analysis, design, code, testing

and deployment can be compared. The FP count at the end of requirements and/or designs

can be compared to FP actually delivered. If the project has grown, there has been scope

creep. The amount of growth is an indication of how well requirements were gathered by and/or

communicated to the project team. If the amount of growth of projects declines over time it is a

natural assumption that communication with the user has improved.

(c) Ease of Contract Negotiations: From a customer view point, Function Points can be used

to help specify to a vendor, the key deliverables, to ensure appropriate levels of functionality

will be delivered, and to develop objective measures of cost-effectiveness and quality. They are

most effectively used with fixed price contracts as a means of specifying exactly what will be

delivered. From a vendor perspective, successful management of fixed price contracts depends

absolutely on accurate representations of effort. Estimation of this effort (across the entire life

cycle) can occur only when a normalized metric such as the one provided by Function Points

is applied.

Note: Here, my meaning of the word ‘normalized metric’ is that Function Point truly accounts

for the entire gamut of software development spreading across all the phases from

Requirements through Testing. Whereas, LOC pertains to and is an outcome of only one of the

phases.

(d) Handling Volatility: The advantage that Function Points bring to early estimation is the fact

that they are derived directly from the requirements and hence show the current status of

requirements completeness. As new features are added, the function point total will go up

accordingly. If the organization decides to remove features or defer them to a subsequent

release, the function point metric can also handle this situation very well, and reflect true state.

(e) Use of Historic Data: Once project size has been determined in Function Points, estimates

for Duration, Effort, and other costs can be computed by using historic data. Since FP is

independent of languages or tools, data from similar past projects can be used to produce

consistent results, unlike Lines of Code data which is much tightly tied to languages requiring

many other parameters to be taken into account.

(f) Availability of Empirical Formulae: Unlike lines of code, FP can be used more effectively

to develop many predictive formulae such as defect potential, maintenance effort which can

help pinpoint opportunities for improvement. Caper Jones estimates that Function Points raised

to the 1.2 power (FP1.2) estimates the number of test cases. That is, test cases grow at a faster

rate than Function Points. This is logically valid because as an application grows, the number

of interrelationships within the application becomes more complex, requiring more test cases.

Many empirical formulae have been suggested by Caper Jones which are in wide use among

FP practitioners.

(g) Enables Better Communication: FP can help improve communications with senior

management since it talks in terms of functionality rather than any implementation details,

technical aspects, or physical code. Further more, Function Points are easily understood by the

non-technical user. This helps communicate sizing information to a user (or customer) as well.

(h) Offers Better Benchmarking: Since FP is independent of language, development

methodology, programming practices, and technology domain, projects using FP become

better candidates for benchmarking across organizations and geographies.

6.2 Disadvantages
Function Points offer vast number of benefits by capturing the size of the software from its

functionality standpoint. FPA does have some disadvantages. However, organizations can

easily overcome these problems by practicing FPA consistently over a period of time.

(a) Requires Manual Work: Due to its very nature, Function Points have to be counted

manually. The counting process cannot be automated.

(b) Necessitates Significant Level of Detail: A great level of detail is required to estimate the

software size in terms of Function Points. Information on inputs, outputs, screens, database

tables, and even records and fields will be required to perform FPA accurately. Typically this is

not the case with any development project where the requirements are not clear to this level of

detail, in the beginning.

(c) Requires Experience: Function Point Analysis requires good deal of experience if it were

to be done precisely. FPA inherently requires sufficient knowledge of the counting rules, which

are comparatively difficult to understand.

7. Lines of Code – Advantages & Disadvantages
7.1 Advantages
(a) Scope for Automation of Counting: Since Line of Code is a physical entity; manual

counting effort can be easily eliminated by automating the counting process. Small utilities may

be developed for counting the LOC in a program. However, a code counting utility developed

for a specific language cannot be used for other languages due to the syntactical and structural

differences among languages.

(b) An Intuitive Metric: Line of Code serves as an intuitive metric for measuring the size of

software due to the fact that it can be seen and the effect of it can be visualized. Function Point

is more of an objective metric which cannot be imagined as being a physical entity, it exists only

in the logical space. This way, LOC comes in handy to express the size of software among

programmers with low levels of experience.

7.2 Disadvantages
(a) Lack of Accountability: Lines of code measure suffers from some fundamental problems.

First and fore most, It is completely inaccurate and unfortunate to have to measure the

productivity of a development project with the outcome of one of the phases (coding phase)

which usually accounts for only 30% to 35% of the overall effort.

(b) Lack of Cohesion with Functionality: Though experiments have repeatedly confirmed

that effort is highly correlated with LOC, functionality is less well correlated with LOC. That is,

skilled developers may be able to develop the same functionality with far less code, so one

program with less LOC may exhibit more functionality than another similar program. In

particular, LOC is a poor productivity measure of individuals, since a developer can develop

only a few lines and still be more productive than a developer creating more lines of code.

(c) Adverse Impact on Estimation: As a consequence of the fact presented under point (a),

estimates done based on lines of code can adversely go wrong, in all possibility.

(d) Developer’s Experience: Implementation of a specific logic differs based on the level of

experience of the developer. Hence, number of lines of code differs from person to person. An

experienced developer may implement certain functionality in fewer lines of code than another

developer of relatively less experience does, though they use the same language.

(e) Difference in Languages: Consider two applications that provide the same functionality

(screens, reports, databases). One of the applications is written in C++ and the other

application written a language like COBOL. The number of function points would be exactly the

same, but aspects of the application would be different. The lines of code needed to develop

the application would certainly be not the same. As a consequence, the amount of effort

required to develop the application would be different (hours per function point). Unlike Lines of

Code, the number of Function Points will remain constant.

(f) Advent of GUI Tools: With the advent of GUI-based languages/tools such as Visual Basic,

much of development work is done by drag-and-drops and a few mouse clicks, where the

programmer virtually writes no piece of code, most of the time. It is not possible to account for

the code that is automatically generated in this case. This difference invites huge variations in

productivity and other metrics with respect to different languages, making the Lines of Code

more and more irrelevant in the context of GUI-based languages/tools, which are prominent in

the present software development arena.

(g) Far from OO Development: Line of Code makes no meaning in the case of Object-

Oriented development where everything is treated in terms of Objects and classes. Since object

is a true representation of data and functionality and so is a Function Point, FPA remains more

relevant for Object-Oriented software development.

(h) Problems with Multiple Languages: In today’s software scenario, never a single language

is used for development. Very often, number of languages are employed depending upon the

complexity and requirements. Tracking and reporting of productivity and defect rates poses a

serious problem in this case since defects cannot be attributed to a particular language

subsequent to integration of the system. Function Point stands out to be the best measure of

size in this case.

(i) Lack of Counting Standards: There is no standard definition of what a line of code is. Do

comments count? Are data declarations included? What happens if a statement extends over

several lines? – These are the questions that often arise. Though organizations like SEI and

IEEE have published some guidelines in an attempt to standardize counting, it is difficult to put

these into practice especially in the face of newer and newer languages being introduced every

year.

8. Recommendations
There are many uses of Function Points beyond estimating schedule, effort and cost as

discussed in preceding sections. Many organizations are using function points and software

metrics just to report organizational level trends. Many project teams report data to a central

metrics group and never see the data again. It is equivalent to reporting data into a black-hole.

If project managers begin to understand how Function Points can be used to estimate costs,

productivity, quality, test cases, to calculate maintenance costs, and so on, they will be more

likely to invest in counting Function Points, making an effective use of FP.

On the other hand, any metrics that we use should be indicators of performance, not exact

measures of performance. They should provide enough granularity to show general trends,

identify problem areas, and demonstrate progress. Trying to make metrics too perfect causes

them to be reported two to three months after they are taken. As a consequence, too much

time is being spent on precision and not enough on action. Metrics should be used in such a

way that they aid efficient project tracking and monitoring and they should act as good

indicators.

9. Conclusion
"Measuring software productivity by lines of code is like measuring progress on an airplane by

how much it weighs." – Bill Gates.

Having seen the vast benefits of Function Points and the inherent shortcomings in Lines of

Code metric in the foregoing sections, it should be obvious that organizations should focus

more on building expertise on Function Point Analysis and put it to effective use.

Accurately predicting the size of software has always troubled the software industry over the

years. Function Points are becoming widely accepted as the standard metric for measuring

software size. Now that Function Points have made adequate sizing possible, it can be

anticipated that the overall rate of progress in software productivity and software quality will

improve. Understanding software size is the key to understanding both productivity and quality.

Without a reliable sizing metric, relative changes in productivity (Function Points per Person

Month) or relative changes in quality (Defects per Function Point) cannot be calculated. If

relative changes in productivity and quality can be calculated and studied over time, then focus

can be put upon an organization’s strengths and weaknesses. Most importantly, any attempt for

improvement can be measured for its effectiveness by putting Function Points to best use.

It is highly recommended that organizations employ Function Points, develop expertise, elicit

accurate data, build a good repository of historic projects, and in turn use the data for effective

benchmarking and continuous improvement.

	1. Objective
	2. Scope
	3. Introduction
	4. Function Points
	4.1 External Input (EI)
	4.2 External Output (EO)
	4.3 External Inquiry (EQ)
	4.4 Internal Logical File (ILF)
	4.5 External Interface File (EIF)
	4.6 Rating the Transactional and Data Function Types
	4.7 General System Characteristics (GSCs)
	4.8 Final FP Count

	5. Lines of Code
	6. Function Points – Advantages & Disadvantages
	6.1 Advantages
	6.2 Disadvantages

	7. Lines of Code – Advantages & Disadvantages
	7.1 Advantages
	7.2 Disadvantages

	8. Recommendations
	9. Conclusion

